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Abstract
We find that the wavefunction of a pair coherent state (or SU(1,1) coherent
state) in the entangled state representation is just the eigenfunction of a type of
Fokker–Planck differential operator. The relationship between these two states
is discussed.

PACS number: 03.65.−w

1. Introduction

It was Einstein–Podolsky–Rosen (EPR) [1] who first used the commutative property of two
particles’ relative position X1 − X2 and total momentum P1 + P2 to initiate the concept of
quantum entanglement. Stemming from EPR’s idea and using the technique of integration
within an ordered product (IWOP) of operators [2, 3], some important entangled state
representations of continuum variables are constructed. For example, the common eigenstate
of two particles’ centre-of-mass coordinate 1

2 (X1 + X2) and the relative momentum P1 − P2

in two-mode Fock space is [4]

|ξ 〉 = exp
[− 1

2 |ξ |2 + ξa
†
1 + ξ ∗a†

2 − a
†
2a

†
1

]|00〉, ξ = ξ1 + iξ2 = |ξ |eiϕ, (1)

which is capable of making up a quantum mechanical representation—the entangled state
representation. By using 〈ξ | we have solved some dynamic problems in [5, 6]. In this work,
we shall apply 〈ξ | representation to solve the Fokker–Planck-like eigenfunction equation

Fg(ξ, α) = 2αg(ξ, α), (2)
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where

F ≡ ∂2

∂ξ∂ξ ∗ +
ξ

2

∂

∂ξ
+

ξ ∗

2

∂

∂ξ ∗ +
1

2
+

ξξ ∗

4
(3)

is a type of Fokker–Planck differential operator, with the eigenfunction g(ξ, α) belonging to
the eigenvalue α. Then, we endow this eigenfunction with a definite physical meaning. We
may encounter the differential operation in F in the study of P-representation of some density
operator in the usual coherent state representation [7, 8]; for example, the time evolution of the
reduced density operator representing a single-mode electromagnetic field’s damping inside a
cavity which is the uncorrelated thermal equilibrium mixture of states with the quality factor
E is governed by the equation [9, 10]

ρ̇ = −E

2
n̄th

(
a1a

†
1ρ − 2a

†
1ρa1 + ρa1a

†
1

) − E

2
(n̄th + 1)

(
a
†
1a1ρ − 2a1ρa

†
1 + ρa

†
1a1

)
, (4)

where the first term on the right-hand side describes the transfer of excitations from the
nonzero temperature heat bath to the quantum system, while the second term represents
the transfer through the decay of photons from the quantum system to the heat bath, n̄th is the
mean number of quanta in the thermal reservoir. Letting |β〉 = exp

[− 1
2 |β|2 + βa

†
1

]|0〉 be the
bosonic coherent state [7, 8], using

a
†
1|β〉〈β| =

(
∂

∂β
+ β∗

)
|β〉〈β|, |β〉〈β|a1 =

(
∂

∂β∗ + β

)
|β〉〈β|, (5)

and deriving the P-representation according to ρ = ∫ d2β

π
P (β, β∗)|β〉〈β| as Scully and Zubairy

did [9], the first part on the right-hand side of (4) naturally appears as

a1a
†
1|β〉〈β| − 2a

†
1|β〉〈β|a1 + |β〉〈β|a1a

†
1 = −

(
2

∂2

∂β∂β∗ + β
∂

∂β
+ β∗ ∂

∂β∗

)
|β〉〈β|. (6)

By comparing (6) with (3), we see that they have the same differential operation, which is
of the Fokker–Planck differential type. Such kind of differential form also appears in the
description of a laser’s density operator approach, decoherence of quantum oscillator, and
some stochastic processes, either via Q function or Wigner function [11]. An interesting
question thus arises: how to solve (2) to obtain the eigenfunction g(ξ, α)? What is its physical
meaning? In the following, we shall show that by combining the entangled state representation
and the pair coherent state [12, 13] (or SU(1,1) coherent state [14]) representation we can let
the Fokker–Planck differential operation emerge naturally and then show that the solution of
(2) is just the wavefunction of the pair coherent state in the entangled state representation.
Though the pair coherent state was proposed in 1976 [12], it is scarcely used in mathematical
physics. It was ignored for a long time till Agarwal applied it to quantum optics [13]. As Dirac
indicated in [15]: ‘when one has a particular problem to work out in quantum mechanics, one
can minimize the labour by using a representation in which the representatives of the more
important abstract quantities occurring in that problem are as simple as possible’, we believe
that constructing various entangled state representations will be useful not only in treating
many problems in quantum optics, but can also open up (explore) new research topics. In
the following, we shall show that how the overlap between the entangled state |ξ 〉 and the
pair coherent state can lead us to find the solution of equation (2). The work is arranged as
follows. In section 2 we briefly review the major features of the entangled state |ξ 〉 and those
of the pair coherent state. In section 3 with the use of the eigenvector equation obeyed by the
pair coherent state, we set up the eigenfunction equation of a Fokker–Planck operator in the
entangled state representation. In section 4 we prove that the eigenfunction of a Fokker–Planck
operator is just the wavefunction of the pair coherent state in entangled state representation.
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The pair coherent states can be generated by considering the competition of the processes by
which photons are either created in pairs or destroyed in pairs. The coherent production or
destruction of photons in pairs can take place through the nonlinear mixing process. In the last
section we explain why we choose |ξ 〉 representation to examine the feature of a pair coherent
state by analysing its classical analogue.

2. A brief review of the features of the entangled state |ξ〉 and the pair coherent state

In [4] we have shown that the state |ξ 〉 simultaneously obeys the eigenvector equations(
a1 + a

†
2

)|ξ 〉 = ξ |ξ 〉, (
a
†
1 + a2

)|ξ 〉 = ξ ∗|ξ 〉. (7)

Note
[
a1 + a

†
2, a

†
1 + a2

] = 0, or using

Xi = a
†
i + ai√

2
, Pi = ai − a

†
i√

2i
, (8)

we have

(X1 + X2)|ξ 〉 =
√

2ξ1|ξ 〉, (P1 − P2)|ξ 〉 =
√

2ξ2|ξ 〉. (9)

By noting the normal ordering form of the two-mode vacuum state projector

|00〉〈00| =: e−a
†
1a1−a

†
2a2 :, (10)

we can immediately prove the completeness relation∫
d2ζ

π
|ξ 〉〈ξ | =

∫
d2ξ

π
: e−|ξ |2+(a

†
1+a2)ξ+ξ∗(a†

2+a1)−a
†
2a

†
1−a1a2−a

†
1a1−a

†
2a2 := 1, (11)

and from (7) we can see the orthonormal property

〈ξ |ξ ′〉 = πδ(ξ − ξ ′)δ(ξ ∗ − ξ ′∗) ≡ πδ(2)(ξ − ξ ′). (12)

On the other hand, the pair coherent state in [12, 13] is constructed based on [Q, a1a2] = 0,

where Q = a
†
1a1 −a

†
2a2 is the two-mode number-difference operator; a1a2 annihilates photons

in pair,
[
ai, a

†
j

] = δij . Assuming q being positive, in the Fock space the pair coherent state is

|q, α〉 = Cq

∞∑
n=0

αn

√
(n + q)!n!

|n + q, n〉, (13)

where Cq is the normalization constant:

Cq = [(i|α|)−qJq(2i|α|)]−1/2; (14)

Jq is the Bessel function. |q, α〉 is the common eigenvector of the following commuting
operators:

a1a2|q, α〉 = α|q, α〉, (15)

Q|q, α〉 = q|q, α〉, (16)

[Q, a1a2] = 0.
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3. Eigenfunction equation of the Fokker–Planck-like operator in the entangled state
representation

From (1), we see

a
†
1|ξ 〉 =

(
∂

∂ξ
+

ξ ∗

2

)
|ξ 〉, (17)

a
†
2|ξ 〉 =

(
∂

∂ξ ∗ +
ξ

2

)
|ξ 〉; (18)

it then directly follows

〈ξ |a1a2 =
(

∂

∂ξ
+

ξ ∗

2

) (
∂

∂ξ ∗ +
ξ

2

)
〈ξ |, (19)

so the Fokker–Planck operator emerges as a representation of the pair annihilators in the
entangled state representation. Making overlap of (19) with the pair coherent state vector
|q, α〉 and using (15), we have

〈ξ |a1a2|q, α〉 =
(

∂2

∂ξ∂ξ ∗ +
ξ

2

∂

∂ξ
+

ξ ∗

2

∂

∂ξ ∗ +
1

2
+

ξξ ∗

4

)
〈ξ |q, α〉 = α〈ξ |q, α〉. (20)

Comparing (20) with (2) and (3), we immediately see that the eigensolution g(ξ, α) of the
Fokker–Planck operator is just 〈ξ |q, α〉, the pair coherent state’s (or SU(1,1) coherent state)
wavefunction in 〈ξ | representation; this is the physical meaning of g(ξ, α). Next, we should
calculate 〈ξ |q, α〉. For this purpose, we use (1), (17) and (18) to examine

Q|ξ 〉 = (
ξa

†
1 − ξ ∗a†

2

)|ξ 〉 = |ξ |(e−iϕa
†
1 − eiϕa

†
2

)
× exp

[
−|ξ |2

2
+ |ξ |(e−iϕa

†
1 + eiϕa

†
2

) − a
†
1a

†
2

]
|00〉 = i

∂

∂ϕ
|ξ 〉, (21)

then projecting (16) on 〈ξ | representation, we set the equation

〈ξ |Q|q, α〉 = −i
∂

∂ϕ
〈ξ |q, α〉 = q〈ξ |q, α〉; (22)

its solution is

〈ξ |q, α〉 = B(|ξ |, q, α) eiqϕ, (23)

where, due to the uniqueness of the wavefunction at ϕ and ϕ + 2π, eiqϕ |ϕ=0 = eiqϕ |ϕ=2π , q

should be integers, and B(|ξ |, q, α) is determined in the following section.

4. Calculating 〈ξ|q, α〉
Recalling the generating function formula of the two-variable Hermite polynomials
Hm,n(ξ, ξ ∗) [16, 17]

∞∑
m,n=0

tmt ′n

m!n!
Hm,n(ξ, ξ ∗) = exp(−t t ′ + tξ + t ′ξ ∗), (24)

where

Hm,n(ξ, ξ ∗) =
min(n,m)∑

l=0

(−)ln!m!

l!(m − l)!(n − l)!
ξm−lξ ∗n−l ,

= ∂m+n

∂tm∂t ′n
exp(−t t ′ + tξ + t ′ξ ∗)|t=t ′=0; (25)
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the entangled state |ξ 〉 can be expanded as

|ξ 〉 = e−|ξ |2/2
∞∑

j,k=0

1√
j !k!

Hj,k(ξ, ξ ∗)|j, k〉, (26)

where |j, k〉 = (a
†
1)

j (a
†
2)

k

√
j !k!

|0, 0〉 is the two-mode number state. Combining (26) and (13), we
derive the overlap

〈ξ |q, α〉 = Cq〈ξ |
∞∑

n=0

αn

√
n!(q + n)!

|n+q, n〉 = Cq e−|ξ |2/2
∞∑

n=0

Hq+n,n(ξ
∗, ξ)

αn

n!(q + n)!
. (27)

Further, using (25) we see

〈ξ |q, α〉 = Cq eiqϕ e−|ξ |2/2
∞∑

n=0

Hq+n,n(|ξ |, |ξ |) αn

n!(q + n)!
. (28)

(28) coincides with (23), so

B(|ξ |, q, α) = Cq e−|ξ |2/2
∞∑

n=0

Hq+n,n(|ξ |, |ξ |) αn

n!(q + n)!
. (29)

Comparing Hq+n,n(|ξ |, |ξ |) (with the real argument |ξ |) with the associated Laguerre
polynomials L

q
n [18], we can identify

Hq+n,n(|ξ |, |ξ |) = n!(−1)n|ξ |qLq
n(|ξ |2). (30)

In order to confirm the correctness of (27), we directly apply the Fokker–Planck-like operator
F of (3) on 〈ξ |q, α〉 in (27):

F〈ξ |q, α〉 = Cq

(
∂

∂ξ ∗ +
ξ

2

) {
e−|ξ |2/2 ∂

∂ξ

∞∑
n=0

Hq+n,n(ξ, ξ ∗)
αn

n!(q + n)!

}

= Cq e−|ξ |2/2 ∂2

∂ξ∂ξ ∗

∞∑
n=0

Hq+n,n(ξ, ξ ∗)
αn

n!(q + n)!
. (31)

By denoting f = Hq+n,n(ξ, ξ ∗), from (25) we can infer the relations

∂2

∂ξ∂ξ ∗ f − ξ
∂

∂ξ
f = −(q + n)f,

∂2

∂ξ∂ξ ∗ f − ξ ∗ ∂

∂ξ ∗ f = −nf. (32)

Therefore, the double-differential operation becomes

2
∂2

∂ξ∂ξ ∗

∞∑
n=0

Hq+n,n(ξ, ξ ∗)
αn

n!(q + n)!

=
∞∑

n=0

[(
ξ

∂

∂ξ
+ ξ ∗ ∂

∂ξ ∗

)
− (q+2n)

]
Hq+n,n(ξ, ξ ∗)

αn

n!(q + n)!
. (33)

Using

∂

∂ξ
Hq+n,n(ξ, ξ ∗) = (q + n)Hq+n−1,n(ξ, ξ ∗), (34)

∂

∂ξ ∗ Hq+n,n(ξ, ξ ∗) = nHq+n,n−1(ξ, ξ ∗), (35)
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and the recursive relations

Hm+1,n + nHm,n−1 = ξHm,n, Hm,n+1 + mHm−1,n = ξ ∗Hm,n,

which can be derived from (25), we see(
ξ

∂

∂ξ
+ ξ ∗ ∂

∂ξ ∗

) ∞∑
n=0

Hq+n,n(ξ, ξ ∗)
αn

n!(q + n)!

=
∞∑

n=0

[
ξHq+n−1,n(ξ, ξ ∗)

αn

n!(q + n − 1)!
+ ξ ∗Hq+n,n−1(ξ, ξ ∗)

αn

(n − 1)!(q + n)!

]

=
∞∑

n=0

{
[Hq+n,n(ξ, ξ ∗) + nHq+n−1,n−1(ξ, ξ ∗)]

αn

n!(q + n − 1)!

+ [Hq+n,n(ξ, ξ ∗) + (q + n)Hq+n−1,n−1(ξ, ξ ∗)]
αn

(n − 1)!(q + n)!

}

=
∞∑

n=0

(q + 2n)Hq+n,n(ξ, ξ ∗)
αn

n!(q + n)!
+ 2α

∞∑
n=0

Hq+n,n(ξ, ξ ∗)
αn

n!(q + n)!
. (36)

Substituting (36) into (33) and then using its result to deal with (31), we obtain

F〈ξ |q, α〉 = 2αCq e−|ξ |2/2
∞∑

n=0

Hq+n,n(ξ, ξ ∗)
αn

n!(q + n)!
= 2α〈ξ |q, α〉, (37)

which coincides with (20). Thus, we have confirmed that the pair coherent state’s wavefunction
in 〈ξ | representation is just the eigenfunction of the Fokker–Planck-like differential operator;
this solution itself seems new. As an application of the result 〈ξ |q, α〉, we consider the short
time evolution of a pair coherent state through the nonlinear mixing process which involves
two-photon transition, which is described by an effective Hamiltonian [13]

Hint = g
(
a
†
1a

†
2 + a1a2

)
, (38)

where g is the coupling constant depending on the nonlinearity of the medium. Assuming
that the initial state is in |q, α〉, then in a short time 
t, |q, α〉 will evolve according to the
expression

exp(−iHintt)|q, α〉 = (1 − iHintt)|q, α〉. (39)

Then the corresponding wavefunction in 〈ξ | representation is

〈ξ |(1 − iHintt)|q, α〉 = (1 − igα
t)〈ξ |q, α〉 − ig
t〈ξ |a†
1a

†
2|q, α〉, (40)

where

〈ξ |a†
1a

†
2|q, α〉 =

(
−ξ ∗ ∂

∂ξ ∗ − ξ
∂

∂ξ
− α − 1

)
〈ξ |q, α〉. (41)

Substituting (41) into (40) and using (27), we obtain the variation of wavefunction

〈ξ |(−iHintt)|q, α〉 = ig
t

(
ξ ∗ ∂

∂ξ ∗ + ξ
∂

∂ξ
+ 1

)
〈ξ |q, α〉

= ig
tCq e−|ξ |2/2
∞∑

n=0

{
(1 − |ξ |2)Hq+n,n(ξ, ξ ∗)

αn

n!(q + n)!

+ ξ ∗Hq+n,n−1(ξ, ξ ∗)
αn

(n − 1)!(q + n)!
+ ξHq+n−1,n(ξ, ξ ∗)

αn

n!(q + n − 1)!

}
.

(42)
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5. Discussions

(1) Here, we explain why we introduced the entangled state 〈ξ | to examine the feature of the
pair coherent state. In the pioneering work of Bhaumik et al [12], they noted that the classical
analogue of the state |q, α〉 with definite q is obtained by constraining the two oscillators
described by the Hamiltonian

H = p2
1

2m
+

1

2
mω2x2

1 +
p2

2

2m
+

1

2
mω2x2

2 (43)

to oscillate, keeping the difference of their action functions

E1

ω
− E2

ω
= fixed. (44)

This quantity corresponds to q (since (E1 −E2)/ω corresponds to a
†
1a1 −a

†
2a2). Bhaumik et al

then used a generating function [19] to perform a canonical transformation from (x1, x2, p1, p2)

to (X1,X2,P1,P2) so that H becomes ω(P1 − P2). Thus, Xi ,Pi take the role of an (phase)
angle and action variable respectively, and P1 − P2 = E1

ω
− E2

ω
is canonically conjugate to

the relative phase 1
2 (X1 − X2) of the two oscillators. On the other hand, in equation (21) we

have noted that Q = a
†
1a1 − a

†
2a2 corresponds to i ∂

∂ϕ
(which is canonically conjugate to angle

ϕ) in 〈ξ | representation which can be viewed as an action variable too, so this naturally led
us to employ |ξ 〉 to further examine the new property of the pair coherent state. As one can
see from (21) and (23), the U(1) phase eiqϕ appears only in |ξ 〉 representation; this indicates
that some important physical property of |q, α〉 (which is an entangled state too, since its
Schmidt decomposition is shown in (13)) can only be seen clearly in the entangled state |ξ 〉
representation.

(2) We now discuss the last term ξξ∗
4 on the right-hand side of equation (3); this kind

of terms, though does not appear in the P-representation of equation (4), may appear in the
calculation of the Q function when the master equation (3) is converted into a Fokker–Planck
differential equation for the Q function. See the paper of Kim and Bužek (the appendix of
[11]) and references therein.

In summary, we have found a new solution to the Fokker–Planck-like eigenfunction
equation that is just the wavefunction of a pair coherent state in the entangled state
representation. This observation shows that the entangled state representation may have
potential uses in solving some Fokker–Planck equations.
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